$$
\begin{aligned}
& \left(\left(a^{r}+b^{r}\right)^{r}-r(a b)^{r}\right)^{r}=\left(a+b^{r}-r(a b)^{r}\right)^{r} \quad \text { s(1rc } \\
& =(\sqrt{s}+r+\sqrt{s}-r-r \sqrt{r})^{r}=(r \sqrt{s}-r \sqrt{r})^{r}= \\
& r r+\Lambda-19 \sqrt{r}=r r-15 \sqrt{r}=15(r-\sqrt{r})
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow x^{r}-1=r m \longrightarrow x^{r}-r_{r}+1=0 \longrightarrow S=r \\
& x^{r}+x=\partial \rightarrow x(x+1)=\partial \rightarrow(x+1)^{r} \text { ird } \quad \text { /1r^ } \\
& \longrightarrow \bar{r}_{1,0}^{r}=\frac{\alpha^{r}+\beta^{r}}{1 r \gamma}=\frac{S^{r}-r S \beta}{1 r \partial}=\frac{-1-1 \gamma}{1 r \partial}=\frac{-19}{1 r \partial} \\
& 1 s \operatorname{Cos}^{r}\left(\frac{\pi}{r}\right) \operatorname{Cos}^{r}\left(\frac{\pi}{r}\right) \operatorname{Cos}^{r}\left(\frac{\pi}{r}\right) \operatorname{Cos}\left(\frac{r \pi}{r}\right)=\quad r(1 r 9 \\
& \operatorname{sics}\left(\frac{\pi}{r}\right)\left(\frac{r}{r}\right)\left(\frac{1}{r}\right)\left(\frac{1}{r}\right) \\
& \operatorname{Cos} \frac{\pi}{\zeta}=r \operatorname{Cos}^{r}\left(\frac{\pi}{r}\right)-1 \rightarrow \operatorname{Cos}^{r}\left(\frac{\pi}{r}\right)=\frac{1+\frac{\sqrt{r}}{r}}{r}=\frac{r+\sqrt{r}}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \alpha=\frac{r}{p} \rightarrow \alpha=\ln 0^{\circ}+r V^{\circ} \\
& F_{1,0}=\frac{\operatorname{Sin} r \alpha-\operatorname{Cos} \alpha}{\operatorname{Cotr} \alpha}=\frac{\operatorname{Sin} V F^{\circ}+\operatorname{Cos}^{\circ} V^{\circ}}{\operatorname{StrF}^{\circ}} \simeq \frac{1, n}{0, r d}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (} \operatorname{Sin}^{r} x \| \operatorname{Cos}^{r} x \mid=-\operatorname{Sin}^{r} x \\
& \longrightarrow\left\{\begin{array}{l}
\operatorname{Sin} x=\cdot \rightarrow x=\{0, \pi, r \pi\} \\
\operatorname{Cos} r x=-1 \rightarrow x=\left\{\frac{\pi}{r}, \frac{\partial \pi}{r}\right\}
\end{array}\right. \\
& \leadsto+\infty \int,
\end{aligned}
$$

$$
\begin{aligned}
& \mu\left(1 \mu_{1}\right. \\
& \text { 1/Irr } \\
& \text { Y(INr } \\
& \longrightarrow \longrightarrow{ }^{+}: y=-1 \longrightarrow \mathrm{SN} \\
& \sqrt{y+r}-\sqrt{y-r}=\sqrt{r y} \quad \sqrt{10} y=r \rightarrow A(\sqrt{5}, r) \\
& f(1 \mu r \\
& 26=\sqrt{10} \\
& \frac{r^{x}\left(1+r^{r}+\cdots+r s r\right)}{r^{x-r}\left(1+r+\cdots+r^{2} r\right)}=\frac{r g r}{g r}\left(\frac{r^{x}}{r^{x-r}}\right)=\partial r \rightarrow \frac{r^{x}}{r^{x-r}}=9 \quad r\left(1 r^{r} \partial\right. \\
& \longrightarrow x=r
\end{aligned}
$$

$$
\begin{aligned}
& r^{|\operatorname{Sin} x|} \rightarrow r^{|\operatorname{Cos} x|} \rightarrow r^{|\operatorname{Cos} x|}-\frac{r}{r}=0
\end{aligned}
$$

$$
\begin{aligned}
& \log _{x}^{y}=t \rightarrow t-\frac{r}{t}=1 \rightarrow\left\{\begin{array}{l}
t=-1 \\
t=r
\end{array}\right. \\
& 1(140 \\
& \rightarrow \lg _{x}^{y}=-1 \rightarrow \text { ū́ं } \quad \lg _{x}^{y}=r \rightarrow y=x^{r} \\
& \lim _{x \rightarrow+\infty}\left(\sqrt{\frac{x}{x+1}+1}-\sqrt{\frac{1}{x}-\frac{x}{x^{2}+1}}\right)=\sqrt{r} \\
& {\left[r\left(\frac{1}{r}\right)^{-r}-1\right]=-1 \quad \text { 人 (1rq }} \\
& g(x)=f^{-1}(x-r)-r-g(r)=f^{-1}(r)-r=1-r=-r \quad \mu\left(1 r_{0}\right. \\
& \therefore \text { Evire } \\
& 1-a^{r}=0 \longrightarrow\left\{\begin{array}{l}
n=1 \\
x=-1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& A\left(n, a^{r}\right), A^{\prime}\left(x^{r}, n\right) \rightarrow A A^{\prime}=\sqrt{Y\left(a-n^{r}\right)^{r}}=\mu^{r}(1 F \mu \\
& \sqrt{r}\left|x-x^{r}\right| \longrightarrow \dot{1}, \dot{1} \cdot x=\frac{1}{r} \longrightarrow A A^{\prime}=\frac{\sqrt{r}}{r} \\
& g\left(\frac{\sqrt{r}}{n}\right)=r \longrightarrow f(x)=\left(r_{x}\right)^{r}+1 \longrightarrow \\
& \text { p/1sp } \\
& f \circ g(x)=19\left(x^{r}-1\right)^{-\frac{r}{r}}+1 \longrightarrow \\
& (f \circ g)^{\prime}(x)=\frac{-r r}{r}\left(x^{r}-1\right)^{-\frac{\partial}{r}}(r x) \xrightarrow{\frac{r}{\sqrt{\lambda}}}-\frac{r r}{\mu r}\left(n^{\frac{\partial}{r}}\right)\left(\frac{4}{\sqrt{n}}\right) \\
& =\frac{-r r \times r r \times r}{r \sqrt{r}}=-r \sqrt{r} \rightarrow \quad r^{\prime} \mu, r
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{h}{r}\right)^{r}+r^{r}=r r \quad r(1 \leqslant s \\
& \rightarrow \frac{h}{r}=r \rightarrow S=r \rightarrow r h=4 r \pi \\
& r=r
\end{aligned}
$$

s! \sim.
. . . - مَ

$$
n(S)=\partial+r_{0}+r_{0}+r_{0}+r_{0}=r r \partial
$$

$$
\text { A: } \quad r+\varphi+c \left\lvert\, \begin{aligned}
& r r \\
& r r \\
& r r \\
& \partial r
\end{aligned} \longrightarrow\right.
$$

$$
\bar{r}_{=1}=r \quad J_{0} \rightarrow
$$

$$
T p=\frac{s d}{r r d}=\frac{1}{\delta}
$$

$$
\begin{equation*}
\operatorname{sig}_{3} \rightarrow-\frac{r \times r \times r}{r \times 1} \frac{F-r}{\times r}==_{b} r \tag{1d}
\end{equation*}
$$

$$
\begin{aligned}
& \bar{\rho}, \rho \rightarrow r-r \varepsilon-r r-\partial r=\sigma_{0,0},
\end{aligned}
$$

$$
\begin{align*}
& P(A)=P(B)=0,9 \\
& P(A \cap B)=0, n d \quad \longrightarrow P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0, n d}{0,9}=\frac{16}{1 n} \\
& P(A \cap B)=0, n \partial \quad \longrightarrow P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{0, n d}{0,9}=\frac{16}{\ln } \\
& S=P+r \longrightarrow \frac{-b}{a}=\frac{-c}{a}+r \longrightarrow-b=-c+r a \longrightarrow r(1 \beta \wedge \\
& c-b=r a \longrightarrow \begin{array}{l}
a=1 \rightarrow \overline{i r} \\
a=r \rightarrow \bar{d} \\
a=r \rightarrow \overline{i r} \longrightarrow \text { б1s }
\end{array} \tag{118}\\
& c-b=r a \longrightarrow \begin{array}{l}
a=1 \rightarrow \overline{i r} \\
a=r \rightarrow \bar{i} \\
a=r \rightarrow \bar{r}
\end{array} \longrightarrow \text { दाs } \\
& c-b=r a \longrightarrow \begin{array}{l}
a=1 \rightarrow \overline{i r} \\
a=r \rightarrow \bar{i} \\
a=r \rightarrow \bar{r}
\end{array} \longrightarrow \text { दाs } \\
& a=r \rightarrow i 1
\end{align*}
$$

$$
x+y+r x=r
$$

$$
x^{r}+y^{r}+r y=r \quad \longrightarrow x-y=0 \longrightarrow y=x
$$

$$
\xrightarrow{v} \frac{r}{r+y}=\frac{y^{r}}{y^{r}-x+\partial}=\frac{x+1}{y+x+1} \longrightarrow r x+r y+r=r x+r+x y+y \longrightarrow x=r
$$

$$
\rightarrow \frac{s}{r+y}=\frac{y^{r}}{y^{r}+r}-y=r \quad y-r x=-r
$$

